A new fly to study

Some European colleagues were kind enough to send me specimens of a fly that I have never seen before: Opetia nigra. It is classified in its own family, Opetiidae, a group not known from the New World, but in the past has been most frequently placed in the family Platypezidae, the flat-footed flies (I kid you not; don’t blame me for these common names!).

Opetia nigra male; photo by Inna Strazhnik

I wanted to see specimens because they are a family that are probably related to my Phoridae, although the precise relationship remains elusive. Hopefully, my studying the structure of these flies will tell us something new, although they were treated in great detail by Peter Chandler in his recent book on the flat-footed flies of Europe.

Phorid parasitoids of endangered ants also endangered

When ant-decapitating flies have endangered hosts, they become endangered, too. Today in the journal Zootaxa, I describe three new species of phorids found by my co-authors Marcos A. L. Braganca, Diego S. Gomes, Jarbas M. Queiros, & Marcos C. Teixeiras. The three flies attack Atta robusta, a species of ant found only in restinga (sandbank) vegetation in a small area in Brazil. Two of the flies are Eibesfeldtphora species, while the other is a Myrmosicarius; all are parasitoids developing in the ant’s head. We don’t have photos, but I am taking the opportunity to show a couple of fabulous photos of another Eibesfeldtphora attacking leaf cutter ants in Costa Rica by Wendy Porras.

Eibesfeldtphora curvinervis about to attack a leaf cutter ant. Photo by Wendy Porras.

The fly laying an egg into the ant’s head through the occipital foramen (neck). Fabulous photo by Wendy Porras.

Terrifying photos. If these flies were the size of crows we’d never leave our houses!

Home of the world’s smallest fly

The world’s smallest fly (0.40 mm long) was collected at Kaeng Krachan National Park in Thailand, the country’s largest.

It is a beautiful place with hot lowlands and misty highlands where the forests are crawling with land leeches.

There are many large mammals in this park, including leopards.

We conducted a training course for the Thai parks staff who would be helping us; here is Mike Sharkey leading the group on how to properly use a Malaise trap. The fly, Euryplatea nanaknihali, was collected by one of the many traps placed in this field.

Worlds smallest fly discovered

In a paper appearing today, Monday, July 2, 2012, I describe the world’s smallest known fly. It was collected during the TIGER (Thailand Inventory Group for Entomological Resources) project, funded by the National Science Foundation with the grant to Dr. Michael Sharkey of the University of Kentucky and me (as co-PI).

Many stories about small things, especially parasites, quote Jonathan Swift:

“So, naturalists observe, a flea
Hath smaller fleas that on him prey;
And these have smaller still to bite ’em;
And so proceed ad infinitum.”

In this case, the quote is especially apt, because the newly discovered worlds smallest flies are parasites!

The smallest fly in the world is a member of the family Phoridae, and is one of the “ant decapitating flies”. Adult females lay an egg in the body of an ant, and the resulting larva feeds in the ants head, eventually causing the decapitation of its host. Some of these flies are being used to attempt biological control on imported fire ants, and were even featured on an episode of the popular television show “King of the Hill”.

Because these flies usually develop in the head of their host ant, they are smaller than their hosts. One would think that the smallest ants would be therefore immune to these nasty parasites, as their heads are vanishingly small. But the world’s smallest fly is one of these ant killers, and at the astoundingly small body length of 0.4 mm, these flies can probably decapitate ants with heads as small as 0.5 mm. That is pretty close to the smallest size that ants can get!

When we think of animals that are small, usually a fly or a flea come to mind. Let’s forget about fleas; they are comparative monsters at around 1-2 mm in length. But what about flies?

The common house fly is something that we think of as being small. In the world of tiny insects, however, they are virtual Godzillas at a whopping 6 mm.

Many flies are much smaller than this. Fruit flies that you see hovering over overripe bananas, for instance, are about 2 mm long, one third of the size of the “giant” house fly.

Some of the biting flies are much smaller than this. One aptly named family of flies has the common name “no see ‘um”, because of their almost invisibility when they are biting you. These flies are getting really small, usually around 1 mm in length.

The world’s smallest fly is 0.4 mm in length. Here is a microscope slide, 1″ x 3″ size, with the holotype specimen of the fly mounted on it. It’s unimaginably small, smaller than a flake of pepper you shake out of the pepper shaker.

holotype specimen of Euryplatea nanaknihali Brown

Do you see it, within the small circle, to the right and slightly above center?

The world smallest fly doesn’t really look like a fly. It’s one of those weird phorids whose body form we call “limuloid”, after Limulus, the horseshoe crab. It is a defensive body form that allows the flies to live in the ant nest which, based on this body structure, is probably part of the fly’s life. It has short wings, but they are functional sized, so this fly could easily fly from ant nest to ant nest. It also has a sharply pointed tip of the abdomen, indicating that it is a parasitic species.

My research is funded by the National Science Foundation, currently grant No. DEB-1025922.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

More microfraction miracles

I call these “miracles” not in the religious sense, but in the unlikelihood that I would notice them in a “normal” sample with all the macro-garbage obscuring them.

The first is a male, perhaps of the genus Metopina, with the thick costal vein almost as long as the wing.

Metopina group male

Next is a bizarre female termitoxeniine that has not yet shed its wings.

female termitoxeniine

A relatively “normal” wingless female Chonocephalus.

female Chonocephalus

Finally, a flattened male of a new phorine genus with a short costa.

new phorine genus

And I still have many more vials to look through! Life is good.

All photos were made by Inna-Marie Strazhnik, who is a superb artist.

Microfractions rule!

I am sorting through a bunch of Malaise trap samples from Thailand from which all the insects larger than about 2 mm have been removed. The absence of larger insects makes all the tiny ones stand out, so these samples, the “microfraction” are golden. They are full of treasures: usually overlooked tiny things like Chonocephalus, termitoxeniines, and weird Metopina group males. I’ll publish more photos soon, but here are a couple I photographed previously.

a Metopina group female

new phorine genus

Note the shieldlike crest on the back of the head in the second photo. Totally bizarre.

Microfractions represent yet another largely unexplored frontier of tropical phorid diversity. After nearly 30 years of doing this, I can still be amazed and awed by “my” flies.

Problems photographing flies. 3. You need light.

Okay, based on parts 1 and 2 of this series, you want to use high apertures (lens f-stop settings) to get lots in focus, but you need to use intermediate apertures to avoid diffraction blurriness. Either you have to focus stack (often impractical in the field) or accept a compromise f-stop like f11. So how does f11 work for you?

In all but the brightest light, f11 (or f8) will require long exposure times, giving ample opportunity for you or the fly to move, blurring the exposure. We’re back to either needing a motionless fly (unlikely) or, this time, more light.

Wait, can’t you just dial up the ISO (sensor sensitivity) on your new digital camera so you can use a faster shutter speed? Yes, but you increase the digital graininess (“noise”) in the photo, such that resolution at high magnifications is destroyed.

Here are a series of closeups of bristles on a tachinid fly showing this effect:

ISO 100

ISO 200

ISO 400

ISO 800

ISO 1000

ISO 1600

ISO 6400

This series of shots tells me that, for my camera, ISO 200 is about the same as 100. For ISO 400-800 I get some degradation, but it is still pretty good. Above ISO 800, thing get pretty mushy. You need to check this in your camera, too.

The result is that changing ISO only helps me a little. If I want the highest quality images, I need more light. How to get this light is my next topic.

Why so spiny?

Acontistoptera female
I got a lot of questions about why yesterday’s fly would be so spiny. I can think of two plausible answers, both of which might be right.

Firstly, such spiny flies are almost invariably found in species associated with ants, especially army ants. As evidence for this, here are 3 flies from the New World tropics found with Labidus army ants: Acontistoptera, in which the long setae (bristles) are found almost only on the wing rudiments, Adelopteromyia, which are spiny on the wing and on the body (especially the head), and Xanionotum, which has multiple rows transversely across the abdomen.
Adelopteromyia female
The large setae could be used to fend off attacking ants, like a porcupine, or for sensory purposes in the darkness of underground ant colonies. Or both. One thing to keep in mind is that the flies probably can move the setae, erecting them or laying them down. They are much more flexible, mobile, and speedy than you might think, as they literally runs circles around the host ants.
Xanionotum female

A brief respite from photography posts: another bizarre phorid

My friend in New Zealand, Hugh Oliver, saw the picture of the wingless female phorid in my last blog post, and asked for more photos of weird phorids. I didn’t even know he was looking at my blog, but just for him I am posting this photo of an extremely bizarre specimen we found just this week in material from Thailand. I think it is a female of the genus Rhynchomicropteron, but if so, it is an extremely unusual one! Thanks to Lisa Gonzalez for pointing it out to me, and Inna-Marie Strazhnik for photographing it. Maybe it can be number 16 in Terry Wheeler’s posts about why flies are great.

female Rhynchomicropteron?